
Reference
(MBS

PUBLICATIONS

U S. Department

of Commerce

AlllDb D34TT2

National Bureau

of Standards NBS- IR- 85-3157

Hierarchical Control System Emulation

Programmer's Manual

January 1 985

iljiiiiiiijiijil&iii

5|:|!***s|s*!*5*!***«*«*i

**:*s«:*i^:*s^t*tMM^s^:*:*s*t*s*s*:*:*s*t*t*:*:*t*:*l

:iSj;i||:i|i:i||!§|i|i|sS|||S§S§!sSsfi2s||s|3sSss|*|

SjfnnjSlIllllIsjijgjifllllslglilsgilsjljijS

i^yf*i*:s:t!*!*!*:*!*!*!*!*:*5*^

85-3157

1985 yy»!yy**y^*yy**j*y**»*j*y**y**i*yyi***i*i*i*iy*iy*!*i*i*i*iy*i*i *1*!*!*! *f y'i'i*!*!*
1 ^ ? ' •

* *

i » i!«

.<*:*:*:

NATIONAL BUREAU
OF STANDARDS

LIBRARY
*

NBS-IR-85-3157

Hierarchical Control System Emulation

Programmer's Manual

Cite M. Furlanl, Editor

January 1985

U S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Factory Automation Systems Division

Gaithersburg, MD 20899

Acknowledgement

The major part of the work that is represented in this

manual was done by Bolt Beranek and Newman, Inc. under Department

of Commerce contract NB81SBCA0826 entitled "Emulation/Simulation

of an Automatic Manufacturing Test Facility". This manual in its

original form was derived from the final report (dated October

1982) from that contract. The product has been further modified

at the National Bureau of Standards. This manual documents the

state of the Hierarchical Control Systems Emulator as of January

1985.

TABLE OF CONTENTS

1. HCSE PROGRAMMER'S MANUAL 1

2. HARDWARE AND SOFTWARE REQUIREMENTS 2

3. EMULATION SOFTWARE OVERVIEW 3

3.1 Philosophy of Emulation
3.2 Summary Software Description

3.2.1 Module Parsing and Building
3.2.2 Run Time Routines 11
3.2.3 Post Processing 12
3.2.4 Libraries 14

4. SOURCE CODE DOCUMENTATION 16

1

U1

U1

u

1 . HCSE PROGRAMMER'S MANUAL

This manual is intended to provide a guide to the

prospective maintainer/modifier of the HCSE software. The reader

is assumed to be familiar with operation of the emulation

software (User's Manual) as well as the following: Praxis

language, Fortran, and VMS system calls. The code can be broken

into three relatively independent classes. The first, parsing,

reads FSM source files and constructs Praxis code or

dictionaries. Also in this class is the builder module which

writes Praxis code to invoke various state machines within a

single VMS process. The second class of modules creates the run

time environment? this includes the shared memory and display

modules. The third class of modules does post processing of

emulation log files to produce listings and summaries.

1

2. HARDWARE AND SOFTWARE REQUIREMENTS

Hardware

DEC* VAX computer system
DEC supported display terminal (VT100, VT52, etc)

Software

DEC VAX/VMS operating system
Praxis compiler and text I/O
DEC Fortran 77

* Certain commercial products are identified in this manual in
order to adequately describe the HCSE. Such identification does
not imply recommendation or endorsement by the National Bureau of
Standards

.

2

3. EMULATION SOFTWARE OVERVIEW

3 . 1 Philosophy of Emulation

The HCSE emulation package is designed to provide a flexible

framework for the development of finite state control systems.

There were several general design goals which drove the

development into its present implementation.

1) The system must represent all manner of state machines
including those with "extended" interpretation.

2) The system had to have the potential of running in real
time.

3) The system had to be both observable and produce an
audit trail.

The first goal resulted in the choice of a compiled rather

than interpretive approach. While low level control modules are

relatively easy to represent as pure state machines, higher level

functions often require a more expressive vehicle. Praxis

presented a completely general, modern, strongly typed language,

which could be utilized to expand the state machine concept

wherever it was essential. However, the goal of representing

each module, at least in the macro sense, as a state machine,

required developing a pseudo language which could be translated

to Praxis.

Goal number two drove the implementation to a multiprocess,

3

shared global section implementation which promoted use of many

VMS features. Most of these features would have been duplicated

in any approach which ran the simulation as a single process.

VMS provides detailed, per process, audit information which

allows complete partitioning of system resources. Also, the

emulation itself maintains a log of all user-defined type declar-

ations and variable transitions stored in common memory.

3.2 Summary Software Description

This section describes in words the function and

interrelationships between the various software files. It is

broken into three sections to reflect the general classes of

software; however the distinctions are in some cases open to

question.

3.2.1 Module parsing and building

State machine modules are all parsed by a single subroutine

regardless of the intended use of the parsed product. Modules

which require a parsed product are the state machine translator,

PARSER, and the data dictionary, DICTION. They both request

parsed products from module PARSING.

3. 2. 1.1 PARSING. PRX

4

The parsing module reads an ' FSM ' file to construct an in-

memory, parsed representation of the file. It collects lists of

types (predefined and user-defined) and variables (input, output,

state, and internal) . When type and variable declarations are

read, the information obtained from the FSM module is further

dissected into more detailed bits of data to be digested by the

parser. For example, the following code

//name WS1
//include GLOBAL.DAT
//type mailbox structure

|
network communications mailbox

mb_length : integer_2
|
length of mailbox in bytes

mb_seqno : integer_2
mb_time : integer_4
mb_text : string

endstructure
//input command mailbox

|
command from job cell

is broken down into two individual sets of data. Type

information is dissected first into the following code.

type_name

type_class

type_fsm

type_comm

MAILBOX

STRUCTURE

WS1

network communications mailbox

Type information is broken down further by class specifications.

str nelms 4 (number of structure elements)

str_elm a pointer which indicates the storage loca-
tion of the structure's elements in common
memory

.

5

The two fields listed above are only inherent to the STRUCTURE

type-elass. Types of the ARRAY class are dissected into two

fields named arr_nelms (number of elements in array) and

arr_elm_type (type of the elements) . ALIAS types are dissected

into alias_name (name of alias type) and init_value (value at

which alias type is initialized) . The final type-class recog-

nized by the parser is BASIC which includes 14 predefined types

that contain only one field. (Note: The only interaction that a

HCSE programmer may have with BASIC types is declaring user-

defined types ^in terms of them} BASIC types are discussed here

simply to provide the reader with a better understanding of how

the parser handles type definitions.

In the case of STRUCTURE type-classes, even further

dissection is required. Elemental information needs to be

analyzed. The following fields represent the first element of

the structure MAILBOX.

elm_name MB_LENGTH

elm_type INTEGER_2

elm_comm length of mailbox in bytes

The remaining elements in the structure are broken down in the

same manner. The dissection of elements into this format takes

place only when the STRUCTURE type_class is specified.

6

When type dissection is complete, the information attained

will be added to the list of other type declarations including

those found in the files STANDARD. ISM and GLOBAL.DAT (The use of

type declaration files is described in the HCSE User's Manual).

To recap briefly, STANDARD. ISM is a file which contains common

type declarations and is called automatically by the parser.

GLOBAL.DAT is also a type declaration file written by the HCSE

user and may contain type declarations (formatted in the same

manner as types are declared in FSM modules using the //type

statement) that suit a particular process or emulation. This

included file (//include) must appear in the same directory where

the FSM modules are parsed or in directories with the assigned

logical names FSM$INCLUDE_0 through FSM$INCLUDE_4 . The //INCLUDE

statement is used to avoid declaring the same type definitions in

separate FSM modules. The included file is attached to the list

of type declarations of an FSM module at the precise point where

the //include statement appears in the FSM. The other set of

declarations handled by the parser are variable declarations.

Continuing with the FSM example code given above, the variable

command would be broken down as follows.

var_name

var_type

var_comm

var fsm

COMMAND

MAILBOX

command from job cell

WS1

7

This information is added to either the list of variables read

from common memory (//input, //inparameter, and //state) , written

to common memory (//state, //output, and //outparameter) , or kept

internal (//internal)

.

The actual state transition table is also constructed in

memory by PARSING. PRX. This table is constructed with a list of

lists. The top level list consists of one entry for each

condition/action pair. Stored in the entry are two pointers, one

to a list of conditions, the other to a list of actions. Each

condition or action is one entry on these lists. Note that each

condition or action line may contain multiple conditions or

actions separated by semicolons, resulting in several entries on

this list. For example, the pair of lines

//conditions curs = "start"? sensor = 3

//actions nexts := "running"; actuator := 4.3

is stored as one entry on the primary list (rowlist) , with

pointers to two lists (conditions, actions) each of which will

contain two entries. These entries will look like

conditions col_text:
col_text

:

actions col_text:
col text:

TST (curs , " start"

)

sensor = 3

nexts := "running"
actuator := 4.3

There are several special cases which are handled

identically to actions. These are //preprocess, //postprocess,

8

//nomatch, and //multimatch. In each case, an action list is

constructed.

The parsing module terminates as soon as it encounters a

//procedures statement, or end of file. The input file is left

open, and pointing to the next record after the procedures

statement.

3. 2. 1.2 PARSER. PRX

Parser, or more properly, translator, converts the internal

format generated by parsing to true Praxis code. It declares

each module as a function, named the FSM name, which returns an

integer compute_delay . The Praxis code imports the various

common memory and textio routines. User-defined types are

declared in the precise form that appeared in the FSM source file

and are merely copied over to the Praxis file. Variables are

declared (static) and a dummy constant with n_variable name is

constructed to hold the name string. The remainder of the input

file is copied to the Praxis file. Code is added which collects

variables from common memory and does common memory synchroniza-

tion. The preprocessing code is entered. The state transition

table is constructed in two sections. The first section consists

of one "if" statement for each condition/action pair. If the

"if" triggers, the pair number is saved. Multiple triggers are

detected by the pair number already having a value when an "if"

9

triggers. If this happens, the pair number is set to -1,

signaling a multimatch condition. The second portion of the

state table consists of the actions. This is constructed from a

giant "select" on pairnumber, with pair number -1 reserved for

multimatches and zero for no matches. After this table, any post

processing code is entered. Finally, output variables are stored

for writing to common memory.

As a parting shot, the internal variable "first_entry" is

set false. "First_entry" , which is initialized "true" the first

time a module is entered, provides a simple mechanism for state

machines to perform graceful startups, regardless of their

initial state.

3. 2. 1.3 BUILDER. PRX

The BUILD module generates PRAXIS code and a linker options

file which are used to construct VMS images. The builder takes

commands of the form

$ BUILD image FSM1/10, FSM2 , FSM3/20

where image is the image file to be constructed, and FSM1, etc.

are state machine modules. The option on each module is the

scheduling interval in "ticks" with the default (zero) being

every tick. The builder constructs two PRAXIS variables for each

10

module; FSMl_count and FSMl_delay. These variables are used to

store the current scheduling interval of the modules. FSM_count

is decremented whenever it is non-zero and the module is acti-

vated whenever the count reaches zero. On each "tick", the

builder places one call to CM_DUMP_OUTPUTS (in SHAKEOUT. PRX) to

write all variables from all modules which were activated.

3. 2. 1.4 DICTION. PRX

The dictionary program may be used to output a list of user-

defined type declarations and construct a cross reference listing

of module inputs and outputs. It uses PARSING to collect the

information.

3.2.2 Run Time Routines

The run-time environment consists of the common memory

routines and the run-time display.

3. 2. 2.1 SHRMEM. FOR

This module, written in Fortran 77, implements reading and

writing to common memory, read/write synchronization, type and

variable logging, and statistics gathering.

3 . 2 . 2 .

2

SHAREOUT . PRX

11

This module acts as a buffer between the state machines and

the actual writes to common memory. It implements the output

delay function, and also the feature which allows multiple state

machines to exist independently of each other in a process.

3. 2. 2.

3

DISPLAY. PRX

This is the run-time display. It displays a list of

variables which the user has requested. On each "tick" , DISPLAY

reads its list of variables from common memory, just as any

other emulation process (it is not a "privileged" process) , and

displays the values of all variables which have been requested.

It also provides timing routines which can force the emulation to

run at some multiple of real time. Again, this is done without

special "privilege". Basically, the simulation will not advance

until all processes assent to it; DISPLAY simply delays before

assenting. The DISPLAY program also provides access to the

emulation snap shot facility.

3.2.3 Post Processing

Post processing is built entirely on the log files provided

by the emulation. These files contain a list of the user-defined

type declarations, all variable transitions, and some general

emulation and CPU statistics. Each record in the log file begins

with a single character identifier which classifies the records

12

according to the information they contain. The following is a

list of these identifiers.

T - Type information (user-defined) : contains the type name,

class, and size. If the type is ALIAS, the record will

also contain the type handle? if ARRAY, record contains

handle and number of type elements? and if STRUCTURE,

record contain the number of components.

C - Component information : contains the name and type handle

of the components of a STRUCTURE type.

V - Variable information : contains variable name, logging

time in ticks, type handle, and variable value. 32 bytes

of storage is allocated to hold the variable value.

D - Data : serves as a continuation line for a variable

record. If the required storage for a variable value

exceeds 32 bytes, the initial portion of this value is

placed in the variable record, and the remaining portion

will be retained in successive data records.

S - Statistics : contains general information such as the

image name, tick_spacing, and CPU and timing statistics.

3. 2. 3.1 SIMLIST . PRX

SIMLIST reads through the emulation log file one record at a

time and transforms the logged information into user readable

form. The final listing contains some opening statistics, user-

13

defined type descriptions, chronological records of variable

transitions, and finally, some closing statistics. SIMLIST does

no interpretation of the data it reads, it just reformats.

3 . 2 . 3 .

2

SUMMARY . PRX

SUMMARY reads information from log files to accumulate

statistics on individual variables. This program derives the

minimum, maximum, time that each variable spent in a given state,

and the mean and variance for real valued variables.

3.2.4 Libraries

Libraries fall into two classes: those which are real, i.e.,

have object code, and those which have Praxis versions just to

generate synopsis files.

3. 2. 4.1 VAXRUNTIM . PRX

This file contains the Praxis description of all run-time

routines which can be called without the calling program having

to specifically link with them. The current version is by no

means complete. It represents the set of VMS system services and

routines from the VAX run-time library that have been required to

date.

14

3. 2. 4.

2

VAXDEF.PRX

VAXDEF has several small functions which implement some of

the VMS calling conventions, such as passing strings by

description. This module has real object code.

15

4 . SOURCE CODE DOCUMENTATION

Documentation from file : PARSING. PRX

name: PARSING

func: this module parses FSM files for all programs in
the emulation package which require it. The
module contains all the code which is dependent on
the particular syntax of the state machine
language. The outputs of this module consist of
dynamic lists of parsed source code. The module
also exports to other modules the internal struc-
ture of these lists. The exported information
consists of: string sizes and defaults for
variable names, types, and line lengths; a struc-
ture which contains all type names, the modules
which declare them, and further type information
which is dependent upon the class of the type; a
structure which contains all the information on
declared simulation variables; lists of variables
as input, output, state, or internal; a structure
which holds pointers to condition/action pairs; a
list of condition action pairs, which points to
lists of code for each column; lists of actions
for preprocessing, postprocessing, multimatch, and
nomatch

.

call: call COLLECT_FSM(ttyfile, infile, procedures)

args

:

ttyfile - inout file : a textio file used for
errors and messages infile.

file - inout file : a textio file with the input
file open on it.

procedures - out boolean : set true if the file
had procedure code left in it.

16

name

:

func

:

call

args:

refs:

name:

func:

Documentation from file : PARSER. PRX

PARSER

this program calls the PARSING module to convert
state machine language into internal format. It
then converts this internal format into Praxis
code. The code which this module generates is
responsible for all common memory synchronization
and access. Code is generated to declare all
user-defined types, to read all input variables
from common memory at the beginning of each cycle,
do any preprocessing, determine which condition/
action pair to execute, execute it, do postpro-
cessing, and store outputs in the queue waiting
for common memory write access.

main program runs as a VMS foreign command, i.e.,
$ PARSE WS1.

input file, extension . FSM assumed and required.

COLLECT_FSM (in module PARSING)
Textio
LIB$GET FOREIGN

Documentation from file : BUILDER. PRX

BUILDER

BUILDER is a main program which constructs the
Praxis code to call one or more state machines, as
well as generating the linker options file to
specify the object modules necessary to create the
executable image. Builder is run as a VMS foreign
command. It accepts commands of the following
format:

$BUILD EXENAME FSM1, FSM2/10, FSM3
, FSM4/50, etc.

where BUILD has been defined as a VMS foreign
command, EXENAME is the name of the executable
image to be built, FSM1 . . . FSMn are state machine

17

names. Each state machine name may be optionally
qualified by an integer. This cycles between
invocations of this state machine, i.e., FSM2/2
means call state machine named FSM2 every third
common memory cycle. The default, zero, causes
machines to be activated for every common memory
cycle. It is important to realize that activation
of a FSM requires reading and writing ALL its
input/output variables; this represents a
substantial fraction of total CPU cycles in a
emulation run; therefore, it is advisable to set
these numbers as high as is reasonable.

call

:

VMS foreign command:
WS2/10, WS3 , etc.

$ BUILD CONTROL WS1/10,

args

:

name of main module which will contain specified
state machines; a list of state machines to be
executed as part of this process.

refs

:

Textio
LIB$GET_FOREIGN

Documentation from file : DICTION . PRX

name: DICTION

func: dictionary module. This routine accepts a list of
state machine modules (as a foreign command)

,

parses them, and forms two lists: a list of user
declared types listing declarers and comments, and
a list of variables listing readers, writers, and
comments

.

Format: DICTIONARY is defined as the foreign
command

$ DICTIONARY :== $HCSE_LIBRARY : DICTION

Command syntax:

$ DICT JC1, WS1, WS2

Output goes to the logical unit DICT_OUTPUT if the
logical name exists and can be opened. Otherwise,

18

it goes to SYS$OUTPUT.

main module, run as VMS foreign command, i.e.,

$ DICT JC1, WS1, WS2, etc.

a list of source files for state machine modules.
The file name only should be provided; the file
type will be " . FSM" . If a file name starts with
an "§"

, it is assumed to be the name of a file
containing FSM source file names; the file type
".DAT" (rather than ".FSM") is appended and
further input is taken from the file. This
indirection can be nested up to the capabilities
of textio.

COLLECT_FSM (in module PARSING)
Textio
LIB$GET_FOREIGN
LIB$DATE TIME

Documentation from file ; SHRMEM. FOR

Common memory is implemented as a Fortran common area which

is dynamically mapped by each process in the simulation. This

mapping is accomplished using the VMS mapped global section

primitives. Types and variables are stored in common memory by

ASCII name, up to 32 bytes long. Associated with types and

variables are the following;

call

:

args

:

refs;

a pointer into a local heap storage (in the mapped section)

the time the variable was last written

a flag controlling whether variable transitions will be
logged

a pointer into arrays of type information

a list of FSMs that read this variable

19

Variables and user-defined types are allocated sequentially

and are added to common memory on the first reference to them.

On the first reference, the variable or type is initialized using

a file that is keyed on variable or type name. The file has the

logical name ' AMRF ' . This only occurs if the file exists and the

variable or type has a value recorded in it. Access to reading,

writing, and linked lists is controlled using cluster event

flags, which are assigned as follows:

96 - when set, enables reading from common memory

97 - when set, enables writing to common memory

98 - used as a semaphore controlling write access to all
linked lists

99 - when set, global shared area has been or is being
created

100 - when set, global shared area is available for
mapping

Subroutines in SHRMEM . FOR

name: CM IN MEMORY ONLY

func: controls whether common memory changes are updated
in the keyed access file.

call CM_IN_MEMORY_ONLY (newflag,prevflag)

newflag - in fortran boolean : when set to true,
keyed access file will be updated.

prevflag - previous state of in_memory flag.

call:

args

:

20

ref s

:

name

:

func:

call

:

args

:

refs:

name:

func:

call

:

args:

refs:

name:

func:

call

:

args

:

none

CM_LOGGING_ON

controls whether all variable transitions are
logged in the logging file. When logging is not
on, only specified variables are logged. Types
and statistics are logged in any case.

call CM_LOGGING_ON (newflag, prevflag)

newflag - in fortran boolean : when set false,
process-wide logging is disabled.

prevflag - previous state of logging flag.

none

CM_TICK_SPACING

real function which returns time between simulated
clock ticks in seconds.

ts = CM_TICK_SPACING ()

none

CM GET TIME

CM_GET_T1ME

returns current simulation time in ticks as well
as tick spacing. (Note: this routine establishes
the tick spacing for the entire simulation. Tick
spacing is constant.)

call CM_GET_TIME (ticks, tick_spacing)

ticks - out integer : number of elapsed ticks
since emulation started.

tick_spacing - out real : spacing between ticks in
real seconds.

21

refs

:

name

:

func:

call

:

args:

refs:

name:

func:

call

:

args

:

refs

:

name:

func:

CM SIMJOIN

CM_READ_REQUEST

grants access to common memory for reading. This
routine MUST be called prior to issuing any
CM_READ_VARIABLE calls. Synchronization is
performed using group event flags. When flag 96
is set, reading is enabled. This routine also
bumps an access count. This count must return to
zero before writing may take place.

changed = CM_READ_REQUEST (fsm_name, fsm_handle)

fsm_name - in byte array (32) : name of FSM
requesting access.

fsm_handle - inout integer : handle to FSM, MUST
be 0 on initial call.

CM_SIMJOIN
CM_WRITE_DONE
CM_FIND_FSM
SYS$WAITFR

CM_READ_DONE

performs common memory synchronization. This
routine MUST be called after all variables have
been read on a given tick. The routine decrements
an access counter which MUST be 0 for writing to
take place.

call CM_READ_DONE ()

none

none

CM_WAKE_FSM

wakes up a given FSM, even if none of its inputs

22

call

:

args

:

refs

:

name:

func:

call

:

args:

refs:

name:

func:

call

:

args:

refs

:

name:

have changed.

call CM_WAKE_FSM (fsm_name , fsm_handle)

fsm_name - in byte array (32) : name of FSM
requesting access.

fsm_handle - inout integer : handle to FSM; MUST
be 0 on initial call.

CM FIND FSM

CM_DISABLE

disables an FSM; it will remain disabled even if
its inputs change.

call CM_DISABLE(fsm_name / fsm_handle)

fsm_name - in byte array (32) : name of FSM
requesting access.

fsm_handle - inout integer : handle to FSM, MUST
be 0 on initial call.

CM FIND FSM

CM_ENABLE

enables a disabled FSM, though without necessarily
waking it up.

call CM_ENABLE(fsm_name, fsm_handle)

fsm_name - in byte array (32) : name of FSM
requesting access.

fsm_handle - inout integer : handle to FSM, MUST
be 0 on initial call.

CM FIND FSM

CM FIND FSM

23

func:

call

:

args

:

refs

:

name:

func:

call:

args:

refs

:

returns the handle to a given FSM name,

call CM_FIND_FSM

fsm_name - in byte array (32) : name of FSM
requesting access.

fsm_handle - inout integer : handle to FSM, MUST
be 0 on initial call.

CM_SIMJOIN
SYS$CLREF
SYS$WAITFR
SYS$SETEF

CM_OPEN_VARIABLE

returns a handle to be used with all subsequent
calls concerning this variable. All new variables
are added to linked lists tables.

handle = CM_OPEN_VARIABLE (name, typ_handle,
fsm_name, fsm_handle, in_or_out)

name - in byte array (32) : containing variable
names, NUL filled.

typ_handle - inout integer : handle to variable
type

.

fsm_name - in byte array (32) : FSM name of calling
routine.

fsm_handle - inout integer : handle to FSM, MUST
be 0 on initial call.

in_or_out - in byte : character I, 0, or S,

signifying input, output, or state.

CM_SIMJOIN
CM_FIND_VAR
CM_FIND_FSM
SYS$CLREF
SYS$WAITFR
SYS$SETEF

24

name

:

func

:

call

:

args

:

refs

:

name:

func:

call

:

args:

refs:

name

:

func:

CM_READ_VARIABLE

reads a specific variable from common memory.

CM_READ_VARIABLE (iptr , time, variable)

iptr - in integer : containing variable handle.

time - out integer : time (in ticks) that variable
was last written.

variable - out general : contents of the variable
in common memory.

none

CM_WRITE_REQUEST

grants access to common memory for writing. This
routine MUST be called prior to issuing
WRITE_VARIABLE calls. Synchronization is
performed using cluster event flags. When flag 97
is set, writing is enabled. This routine controls
the transition from system-wide reading to
writing. Transition (clearing flag 96 and setting
flag 97) occurs when the number of processes
awaiting write privileges is >= the total number
of processes which have 'joined' the simulation.

call CM_WRITE_REQUEST (

)

none

CM_SIMJOIN
CM_READ_DONE
SYS$CLREF
SYS$SETEF
SYS$WAITFR

CM_WRITE_DONE

performs common memory synchronization. This
routine must be called after all writing has beer.

25

call

:

args

:

refs:

name

:

func:

call

:

args:

refs:

name:

func:

call

:

args

:

done. This routine also causes the transition
from writing to reading. This transition occurs
when the count of processes requesting write
privileges goes to zero. At this time, the
writing flag (97) is cleared and the reading flag
(96) is set. The simulation clock tick is also
incremented at this point.

call CM_WRITE_DONE ()

none

SYS$CLREF
SYS$SETEF

CM_WRITE_VARIABLE

writes a specific variable to common memory. If
this write causes a transition and logging is
turned on, then the variable is logged in the
logging file. If common memory is being main-
tained in the keyed access file, then the record
is updated in the keyed file.

call CM_WRITE_VARIABLE (iptr , variable)

iptr - in integer : containing variable handle.

variable - in general : the variable to be written
to common memory.

none

CM_LOG_VARIABLE

establishes the value of the logging flag for an
individual variable. This has effect when
process-wide logging has been turned off with
CM_LOGGING_ON.

call CM_LOG_VARIABLE (iptr, newflag, prevflag)

iptr - in integer : containing variable handle,

newflag - in fortran boolean : when set true,

26

refs

:

name:

func:

call

:

args:

refs:

name:

func:

call

:

logging is enabled for a specific variable.

prevflag - out fortran boolean : previous state of
flag.

none

CM_OPEN_ALIAS_TYPE

one of a set of type declaration routines. The
routine looks up a type in common memory. If the
type was not previously declared, it is created.
If it had been previously declared, the routine
verifies whether the current information on the
type corresponds to the previously declared
information. Finally, the routine returns a
handle to the position of the type information in
the type_info arrays. This particular routine
works on user-declared types which are declared to
be the same as another type (either predefined or
user-defined)

.

handle - CM_OPEN_ALIAS_TYPE (name, a_typ)

name - in byte array (32) : containing type name,
NUL filled.

a_typ - in integer : handle of alias type.

CM_SIMJOIN
SYS$CLREF
SYS$WAITFR
SYS$SETEF

CM_OPEN_ARRAY_TYPE

one of a set of type declaration routines. This
routine performs basically the same operations as
the routine CM_OPEN_ALIAS_TYPE described above,
except that it is designed to handle user-declared
array types as opposed to alias types.

handle = CM_OPEN_ARRAY_TYPE (name, elm_type,
elm_count, pflag)

27

args

:

refs

:

name:

func:

call

:

args:

refs

:

name - in byte array (32) : containing type name,
NUL filled.

elm_type - in integer : pointer to type of the
array elements.

elm_count - in integer : number of elements in the
array.

pflag - in boolean : flag indicating whether array
is packed.

CM_SIMJOIN
SYS$CLREF
SYS$WAITFR
SYS$SETEF

CM_0PEN_STRUCTURE_TYPE

one of a set of type declaration routines. This
routine performs basically the same operations as
the routine CM OPEN_ALIAS_TYPE described above,
except that it Ts designed to handle user-declared
structure types as opposed to alias types.

handle = CM_OPEN_STRUCTURE_TYPE (name, f_names,
f_types, f_count, pflag)

name - in byte array (32) : containing type name,
NUL filled.

f_name
names

.

- in byte array (3 2,*) : list of field

f_types
types.

- in integer array (*) : list of field

f_count - in integer : number of fields.

pflag - in boolean : flag indicating whether
structure is packed.

CM_SIMJOIN
SYS$CLREF
SYS$WAITFR

28

name

:

func:

call

:

args

:

refs:

name:

func:

call

:

args:

refs

:

SYS$SETEF

CM_FIND_TYPE

logical function which returns .true. if the
given type currently exists in common memory.
This function also retruns the type handle if the
type is defined.

istat = CM_FIND_TYPE (name , h_typ)

name - in byte array (32) : containing type name,
NUL filled.

h_typ - in integer : handle of type

CM_SIMJOIN
SYS$CLREF
SYS$WAITFR
SYS$SETEF

CM_FIND_VAR

CM_FIND_VAR looks a variable up in common memory,
given a name. If the variable does not exist,
then it is created. Newly created variables are
allocated from the local heap storage implemented
as part of the shared common area. Variables are
initialized to either binary zero or the value
contained in the keyed file.

call CM_FIND_VAR (name , iptr, typ)

name - in character*32 : name of variable. (Note:
passed by DESCR)

iptr - out integer : pointer to variable
description in tables.

typ - in integer : pointer to type info arrays.

SYS$CLREF
SYS$SETEF
SYS$WAITFR

29

name

:

func:

call

:

args

:

refs:

name:

func:

call

:

args:

refs

:

CM_ISTHERE

logical function which returns .true, if the given
variable currently exists in common memory. This
function also returns the internal pointer to the
arrays of variable type information.

istat *= CM_ISTHERE (name, typ , iptr)
*

name - in byte array (32) : containing variable
name, NUL filled.

typ - out integer : pointer to type information
arrays. Pointer is stored on the first write
sequence of that variable.

iptr - out integer : pointer to variable in
internal tables.

none

CM_GET_NAMES

this routine may be called repeatedly to retrieve
the names of all variables currently in common
memory. It is the caller's responsibility to
maintain a pointer used by this routine between
calls. On the first call to search the name
table, nptr must be 0. This instructs the routine
to start at the top of the name table. The caller
should continue calling (without changing nptr)
until nptr is again returned to 0.

call CM_GET_NAMES (name, typ, ntpr)

name - out byte array (32) : variable name, NUL
filled.

typ - out integer : pointer to type information
arrays.

nptr - inout integer : internal pointer used by
CM_GET_NAMES (refer to function)

.

none

30

name

:

func

:

call

:

args

:

refs:

name:

func:

call:

args:

refs:

name:

func:

cm_get_type:s

given a handle in the arrays of type information,
this routine returns the values for the type '

s

size, class, and subtype.

CM_GET_TYPES (thandle, size, class, subtype)

thandle - in integer : handle of the type, pointer
in type information arrays.

size - out integer : size of variable in bytes.

class - out integer : type class (0 = Basic, 1 =

Alias, 2 *= Array, 3 = Structure) .

subtype - out integer : pointer to more detailed
type information in type-info arrays.

none

cm_get_ARRAY_inF°

this routine is passed a handle in the arrays of
array type information, and returns the number and
type of elements in the array.

call CM_GET_ARRAY_INFO (arr_ptr , elm_typ, num_elms)

arr__ptr - in integer : handle to array type
information arrays.

elm_typ - out integer : type of array element.

num_elms - out integer : number of array elements,

none

CM_GET_STRUC_INF0

this routine is passed a handle in the arrays of
structure information, and returns the number of

31

call

:

args

:

refs:

najhe:

func:

call

:

args

:

refs:

name:

func:

call

:

args

:

elements and a pointer to the element list.

call CM_GET_STRUC_INFO (str_ptr , elm_list,
num_elms)

str_ptr - in integer : handle to structure type
information arrays.

elm_list - out integer : pointer to list of
structure components.

num_elms - out integer : number of structure
components

.

none

CM_GET_COMPONENT_INFO

this routine is passed a handle in the arrays of
structure component information, and returns the
name and type of the component.

call CM_GET_COMPONENT_INFO (eptr , ename, etype)

eptr - in integer : handle to component
information arrays.

ename - out byte array (32) : name of the
component, NUL filled.

etype - out integer : handle to the component
type.

none

CM_SNAP_SHOT

this routine makes a snap shot dump of common
memory. (Note: file is written on fortran
logical unit 3.)

call CM_SNAP_SHOT (filnam, fsm_name, fsm_handle,
ierr)

filnam - in byte array (32) : file name to be used

32

for snap shot file.

fsm_name - in byte array (32) : FSM name.

fsm_handle - inout integer : FSM handle.

ierr - out integer : error flag which is normally
0 .

refs

:

CM GET TIME
CM READ REQUEST
CM GET NAMES
CM READ DONE
SYS$GETTIM

name: CM_ENTER_ALIAS

func: this routine enters an alias for an existing
variable. Aliases may be used whenever a variable
is read or written.

call

:

istat *= CM_ENTER_ALIAS (alias_name , actual_name)

args

:

alias_name - in byte array (32) : alias name of
variable, NUL padded.

actual_name - in byte array (32) : actual name of
variable, NUL padded.

refs: CM ISTHERE
CM REMOVE ALIAS
SYS$CLREF
SYS$WAITFR
SYS$SETEF

name: CM_REMOVE_ALIAS

func: this routine removes an alias from the common
memory

.

call

:

call CM_REMOVE_ALIAS (alias_name)

args: alias name - in byte array (32) : alias name to be
removed from common memory tables.

33

ref s

:

name:

func:

call:

args:

refs:

SYS$SETEF
SYS$CLREF
SYS$WAITFR

CM_SIMJOIN

this procedure performs all initializations
necessary for a process to enter into an emulation
run. Specifically, it maps the shared common
area, or creates and initializes it. In addition,
this routine associates cluster event flags, opens
all files for data logging, and performs variable
initializations. Also, it initiates process-wide
statistics gathering, and writes initial logging
information to the logging files. Code in this
routine uses the following logical names:

AMRF - keyed access file for common memory
initialization.

username - the user's login name is used as the
logical name for the mapped global section as well
as for the cluster name for the event flags.

AMRFSIM. TMP - file name for section file (only
used when page file is full)

.

imagename.LOG - logging file name.

call CM_SIMJOIN()

none

CM_GETUSR
CRBUFMAP - macro routine which performs
specialized file opening. (Routine is unneeded
when emulation is run on VMS versions 3 or
greater.

)

CM_GETIMAGE
CM_SIMLEAVE
CM_TYPERR
CM_SHRLOCAL$INIT
SYS$WAITFR
SYS$SETEF
SYS$MGBLSC
SYS$CRMPSC

34

name:

func:

call

:

args

:

refs

:

call

:

func

:

call

:

args

:

refs:

name:

func:

call

:

args

:

SYS$ASEFC
SYS$TRNLOG
SYS$DCLEXH
LIB$INIT TIMER

CM_SHRLOCAL$INIT

this is the data initialization block for the
process-local common area of an emulation process.

None available

None available

None

CM_SIMLEAVE

this is the exit handler for an emulation process.
It is called on image exit by the system exit
handler (never by the user) . This routine
terminates read and write access if they were
enabled, writes summary statistics to the logging
file, closes the logging and keyed access files.

None available

status - in integer*4 : exit status passed by
system.

CM_READ_DONE
CM_WRITE_DONE
LIB$STAT_TIMER
SYS$CLREF
SYS$SETEF

CM_GETUSR

this routine retrieves the username from the job
process table.

call CM_GETUSR (usrnam)

usrnam - out character* (*) : username fror.

35

refs

:

name

:

func:

call

:

args:

refs

:

name:

func:

call

:

args:

refs:

name:

func:

call

:

args

:

refs:

the table of processes.

SYS$GETJPI

CM_GETIMAGE

this routine retrieves the image filename from the
job process table.

call CM_GETIMAGE (imagename)

imagename - out character* (*) : image filename
from process table.

SYS$GETJPI

CM_GETPRCNAM

this routine retrieves the process name from the
job process table.

call CM_GETPRCNAM (procname

)

procname - out character* (*) : process name from
process table.

SYS$GETJPI

CM_TYPERR

this routine types out a system error message
given the system error code.

call CM_TYPERR (istat)

istat - in integer : system error message code.

SYS$GETMSG

Documentation from file : SHAREOUT.PRX

36

name

:

SHAKEOUT. PRX

func:

name:

func

:

call

:

args

:

SHAKEOUT. PRX implements delayed writing to common
memory. Calls to this module are issued by both
the PARSER (using subroutine CM_STORE_OUTPUT) and
the BUILDER (using subroutine CM_DUMP_OUTPUT)

.

Since the emulation allows multiple state machines
per process, individual machines could not write
their outputs to common memory at the end of the
table. This would have resulted in the next state
machine in the same process seeing inconsistent
variables in common memory, i.e., not all
variables written on the same tick. To circumvent
this problem, PARSER generates calls to
CM_STORE_OUTPUT . The CM_STORE_OUTPUT routine
constructs a copy of the written variable in
dynamic (Praxis ALLOCATE) memory. All variables
are written to this list from all state machines
within a given VMS process. After all state
machines within a process have been invoked, the
main module, constructed by BUILDER, searches for
all variables which have a zero (0) write delay.
These variables are written to common memory
(using CM_WRITE_VARIABLE) and their dynamic memory
FREE'd. Any variable with a non-zero write delay
has the delay decremented by one tick, and remains
on the list.

Subroutines in SHAKEOUT. PRX

CM_STORE_OUTPUT

this routine stores common memory write requests
in dynamic memory. Variables are stored with
their handle, delay, and value on a dynamic,
in_memory list.

call CM_STORE_OUTPUT (vhandle
,

variable, vsiz,
delay)

vhandle - in integer : handle of the variable
being stored. Handle is returned by the routine
CM_OPEN_VARIABLE in SHRMEM . FOR

.

variable - in general : value of variable.

37

refs

:

name

:

func:

call

:

args:

refs:

name:

func:

vsiz - in cardinal : size of variable in bits,

delay - in integer : the delay, in ticks, before

writing value to common memory,

none

CM_DUMP_OUTPUTS

this procedure scans the dynamic list constructed
by CM_STORE_OUTPUT and writes all variables whose
time has come into common memory. It also removes
these variables from the list and releases their
storage. Any variable whose delay count has not
been reached is left on the list and the delay is
decremented

.

CM_DUMP_OUTPUTS ()

none

CM_WRITE_REQUEST
CM_WRITE_VARIABLE
CM WRITE DONE

DISPLAY

DISPLAY is the main observation tool of the
emulation. DISPLAY runs as an independent process
which has access to common memory. The user may
interact to display variables, change the speed of
the emulation, single step the emulation, and dump
snap shot files. DISPLAY will run on any terminal
supported by the DEC VMS run time library of scope
commands. The user should start all other
emulation processes (if they are being run as
subprocesses) prior to running DISPLAY. When
DISPLAY is activated, it clears the screen and
waits for the user to type any character, except
"E" and "D" which are reserved for special
functions, to begin the display process. The user
has the following single character commands
available to him.

38

E - Enter new variable (s) for display
D - Delete variable (s) from the display
M - scroll display area up or down a

given number of lines
up-arrow - scroll display area up
down-arrow - scroll display area down
right-arrow - shift display area right
left-arrow - shift display area left
C - Change the speed of the emulation
S - Single step the emulation
G - Go, resume continuous operation (used

after S)

Q - Quit or exit DISPLAY program
L - Log a snap shot dump of common memory
H - Help (which essentially contains this

file)

A brief description of the commands are:

D - Enter variable name(s) to be added to the
display. This variable name may contain
wildcard (*) characters to select whole
classes of variables. Common memory is
searched for all variables meeting this speci-
fication and the indicated variables are added
to the bottom of the display.

NOTE: The search is performed at the time the
the "enter variable" command is issued and not
on every subsequent time tick? hence,
variables which subsequently appear in common
memory which might meet a previous specifica-
tion will not be displayed!

D - Delete variables from current display;
wildcards are accepted.

M - Move the display window, and thus, the display
of variables up or down a designated number of
lines. It accepts any non-zero integer, but
will not move the variable display pass the
uppermost or lowermost line in the variable
list. Scrolling of variables can also be
accomplished using the up or down arrows,
which will scroll the display one line in the
respective direction. To move the display
right or left, the right and left arrow may be

39

used.

refs:

C - Change the speed of emulation. The command
accepts a single number specifying the ratio
of wall clock time to emulated time, i.e.,
entering a 10 causes the emulation to run at
l/10th real time. Entering 0 disables timing
of the emulation and allows the emulation to
run at its maximum rate.

S - Single steps the emulation. One common memory
read/write cycle is executed for each time the
'S' key is pressed. Between each single step,
the emulation is STOPPED. The user may
examine or delete variables while in single
step mode. Continuous operation may be
resumed at speed last specified (if none
specified, emulation runs at maximum speed) by
the 'G' (Go) command.

G - The 'Go' command resumes continuous operation
after single stepping through the emulation.

L - Log a snap shot of the values in common
memory at the time the 'L' key is pressed.
The command requests an output file name for
the memory dump. The emulation is temporarily
halted while the current contents of common
memory are written to a logging file.

H or ? - Prints a listing of available commands.

Q - Quit cause the display program to exit. It is
somwhat safer to exit the display program with
this command than to arbitrarily use AY.

While every attempt has been made to protect
common memory from dead locks, one can never
be quite sure.

LIB$PUT_SCREEN
LIB$ERASE_LINE
LIB$ERASE_PAGE
LIB$GET_EF
LIB$SET_SCROLL
LIB$SET_CURSOR
LIB$UP_SCROLL
LIB $DOWN_SCROLL
CM GET TIME

40

name:

func:

call

:

refs

:

CM_READ_REQUEST
CM_READ_VARIABLE
CM_READ_DONE
CM_WRITE_REQUEST
CM_WRITE_DONE
CM_ISTHERE
CM_GET_NAMES
CM_GET_TYPES
cm_get_array_inf°
CM_GET_STRUC_INFO
CM_GET_C0MP0NENT_INF0
CM_SNAP_SHOT
SYS$TIMR
SYS$WAITFR
ISBYTE (in library, BP_LIBRARY)
GETCH "

PUTCH "

CVNTIM H

SIMLIST. PRX

SIMLIST uses the logging file produced whenever an
emulation is run. First, all user-defined types
are listed, then, each variable is listed whenever
their values change during the emulation. SIMLIST
uses Fortran routines to open and close the log
file, and to read a record from the log file into
a character buffer record.

Format: SIMLIST is defined as the foreign command

$ SIMLIST :== $HCSE_LIBRARY: SIMLIST

Command syntax:

$ SIMLIST file
or $ SIMLIST file.log

Output goes to logical unit SIM_OUTPUT if the
logical name exists and can be opened. Otherwise,
output goes to SYS$OUTPUT.

main module? run as a VMS foreign command, i.e,

$ SIM file.log.

READREC . FOR (found in CM_LIBRARY)

41

name: SUMMARY . PRX

func:

call:

refs:

SUMMARY reads a log file, lists all the statistics
and summarizes the variable transitions observed.
It tabulates transition information for variables
including the variable's last value, the number of
transitions for all types, the minimum and maximum
values for numeric types, and the amount of time
spent at each value for string types.

Format: SUMMARY is defined as the foreign command

$ SUMMARY :== $HCSE_LIBRARY : SUMMARY

Command syntax:

$ SUMMARY file
or $ SUMMARY file.log

Output goes to logical unit SUM_OUTPUT if the
logical name exists and can be opened. Otherwise,
it goes to SYS$OUTPUT.

main module? run as a VMS foreign command, i.e.,
$ SUMMARY simrun.log.

READREC . FOR (found in CM_LIBRARY

)

42

FEDERAL INFORMATION PROCESSING STANDARD SOFTWARE SUMMARY

01. Summary date

r
Yr. Mo. Day

V 5 1

04. Software date

Yr.—T~~
Mo. D *y

02. Summary prepared by (Name and Phone)

Cita Furlani, 921-2461 area code (301)
05. Software title

Hierarchical Control System Emulation
Programmer's Manual

06. Short title

08. Software type

Automated Data

g System

Computer Program

Subroutine/Module

03. Summary action

New Replacement DeletionSO
Previous Internal Software ID

07. Internal Software ID

09. Processing mode 10.

General
Application area

[X] Interactive

[~~[Batch

| |

Combination

Computer Systems
Support/ Utility

Scientific/Engineering

Bibliographic/Textual

11. Submitting organization and address

Management/
Business

Process Control

Other

Specific

Industrial Control
Design

12. Technical contact(s) and phone

U. S. Department of Commerce
National Bureau of Standards
Bldg. 220 - Room A-127
Gaithersburg, MD 20899

13. Narrative

Cita Furlani 921-2461 area code (301)

The Hierarchical Control System Emulation is a collection of computer programs written in

the high-level Praxis language for use on a Digital Equipment Company VAX 11/780 ™
processor under the VMS operating system. These programs allow the user to write,
debug, and concurrently emulate modules of a hierarchical control system and to simulate
the physical plant which is controlled. The emulation executes in real time and
interactive display and data logging capabilities are included. The emulation is intended
as a computer-aided control system design tool for the NBS Automated Manufacturing Research
Gacility. The Programmer's Manual provides documentation of the design of the emulation
code and the emulation programs themselves; it is intended for the system programmer
rather than the user.

14. Keywords

Automated manufacturing; automatic control; hierarchical control system; computer-aided
design; computer-aided manufacturing simulation.

15. Computer manuf'r and model 16. Computer operating system 17. Programing language(s) 18. Number of source program state

ments

DEC VAX 11-780 VMS. Vers. 2.7 Praxis. Fortran
19. Computer memory requirements

1 Mbyte

20. Tape drives

None

21. Disk/Drum units

System disk required

22. Terminals

VT52 , VT100 or

equivalent
23. Other operational requirements

None

24. Software availability 25. Documentation availability

Available Limited In-house only Available Inadequate In-house only

0 0

For government use only. NTIS

26. FOR SUBMITTING ORGANIZATION USE

185-101 Standard Form 185

n 3 S-H 4A f s .

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBSIR 85-3156

2. Performing Organ. Report No. 3. Publ ication D ate

May 1985

4. TITLE AND SUBTITLE

Hierarchical Control System Emulation

Programmer's Manual

5. AUTHOR(S)

Cita Furlani (Editor)

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE 8. Type of Report & Period Covered

WASHINGTON, D.C. 20234

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)
10.

SUPPLEMENTARY NOTES

Previously published as NBS—GCR-82-4 14 - NTIS // PB83 — 137059.

[~X| Document describes a computer program; SF-185, FlPS Software Summary, is attached.

1

1.

A BSTRACT (A 200-word or less factual summary of most si gnifi cant information. I f document includes a s gr •
< can t

bi bliography or literature survey, mention it here)

The Hierarchical Control System Emulation is a collection of computer
programs written in the high-level Praxis language for use on a Dicital

TM • TM
Equipment Company VAX 11/780 * processor under the VMS operating
system. These programs allow the user to write, debug, and concurrent!-.-
emulate modules of a hierarchical control system and to simulate the
physical plant which is controlled. The emulation executes in real ti~e
and interactive display and data logging capabilities are included.
The emulation is intended as a computer-aided control system desicr. t : : 1

for the NBS Automated Manufacturing Research Facility. The Freer arm : r

'

Manual provides documentation of the design of the emulation code an :

the emulation programs themselves; it is intended for the svstem
programmer rather than the user.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitali ze only proper ns~ -
; .

Automated manufacturing; automatic control; hierarchical control «

aided design; computer-aided manufacturing simulation.

13. AVAILABILITY T

NT] Unlimited
TT
;

For Official Distribution. Do Not Release to N T IS

[~~j Order From Superintendent of Documents, U.S. Government Panting Office i

- 20402.

[Xj Order From National Technical Information Service N T I S i

.
Springfield. VA. *

J

